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LE’ITER TO THE EDITOR 

Topological frustration and quasicompact phase in a model of 
interacting polymers 

M KneieviCt and J VannimenusS 
+ Department of Physics and Meteorology, Faculty of Natural and Mathematical Sciences, 
POB 550, 11001 Beograd, Yugoslavia 
$ Groupe de Physique des Solides, Ecole Normale Superieure, 75231 Paris C‘edex 05, France 

Receited 1 July 1987 

Abstract. We study the geometric and thermal properties of a model of self-interacting 
linear polymers (self-avoiding walks) on a fractal lattice, the three-dimensional modified 
Sierpinski gasket of base b = 3. As a consequence of the topological structure of this lattice, 
the polymer is ‘frustrated’ and cannot fill the available space with a finite density. When 
strong attractive interactions between monomers are present the polymer cannot reach the 
compact globule state usually observed. Rather, it shrinks into a novel phase, the ‘semicom- 
pact’ state, below a finite critical temperature. In this phase, the monomer density per 
lattice site vanishes asymptotically for large polymers. We give the exact values of the 
critical exponents at this transition and discuss its possible relevance for polymers placed 
in a random matrix. 

At high temperatures and in good solvents a linear polymer has an extended coil 
configuration, where the monomer density vanishes asymptotically for large polymers, 
while at low temperatures and in poor solvents the polymer is found in a compact 
globule state, with a finite monomer density. This so-called collapse transition has 
been the subject of continuous investigations (Flory 1966, de Gennes 1979). Using 
the analogy with a magnetic phase transition it has been pointed out that this transition 
may be seen as a tricritical point (de Gennes 1975). 

Much work has been devoted to the study of lattice models (i.e. self-interacting 
self-avoiding walks in the case of linear polymers) of this phenomenon, and progress 
has been made recently for the determination of the critical exponents (Derrida and 
Saleur 1985, Ishinabe 1985, Saleur 1986, Privman 1986). To each configuration of an 
N-step self-avoiding walk having K nearest-neighbour pairs of sites one associates 
the Boltzmann factor w p  = exp(PE/k,T), P = K - N being the excess number of 
nearest-neighbour bonds and E > 0 is the attractive energy per pair. All thermal 
properties of the polymer can be deduced from the generating function G(x, T ) =  
Z a( N, P )  x N  w p  where Cl( N, P )  is the number of different configurations of an N-step 
walk having P contacts with itself. 

For large N, one expects the following asymptotic behaviour of the mean-squared 
end-to-end distance ( R h ) :  

( R h )  - N2” (1) 
with 

VSAW wc 

w = w, 

l l d  w >  w,  
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where w, denotes the critical value of the interaction strength w at the collapse transition 
and  d is the spatial dimension of the lattice. 

Despite the apparent simplicity of the lattice model of interacting polymers very 
few exact results are known. This has motivated recent studies on some fractal lattices 
where the asymptotic properties of polymers can be obtained by using the exact 
recursion relations (Klein and  Seitz 1984, Dhar and Vannimenus 1987, KneieviC and 
Vannimenus 1986, 1987). It was shown that a collapse transition occurs at a finite 
temperature in the case of polymers on sufficiently ramified lattices. The values obtained 
for the critical exponents are in qualitative agreement with corresponding estimates 
for regular lattices (Dhar  and Vannimenus 1987, hereafter referred to as DV). Another 
motivation for these studies comes from the difficult problems associated with polymers 
in random media: conflicting results have been presented for the effect of disorder on 
SAW (see Kardar and Zhang 1987 and references therein), and fractal lattices may help 
understanding these subtle questions (Kneievik and Vannimenus 1987). 

In  the present letter we study the asymptotic properties of a SAW on a three- 
dimensional, Sierpinski-type fractal of base b = 3 (figure 1). Th_e fractal dimension of 
this lattice is D = log lO/log 3, while its spectral dimension is d = 2 log lO/log( 160/9) 
(Hilfer and Blumen 1984). Our approach is very similar to the one which was used 
in DV to study the collapse transition of linear polymers on the usual ( b  = 2) three- 
dimensional Sierpinski gasket. 

Figure 1. First two stages in the iterative construction of the three-dimensional modified 
Sierpinski gasket of base b = 3. By convention the regions containing matter are represented 
by full lines and the hidden boundaries are denoted by broken lines. This object has a 
fractal dimension D =log IO/log 3 = 2.096. 

To obtain the geometrical critical exponent v one needs only two restricted generat- 
ing functions: A'" counts the number of configurations where the polymer goes once 
through the rth-order gasket while E"' counts the configurations where the polymer 
goes twice through the gasket (see figure 3 of DV). However, the number of polymer 
configurations is so large here that one has to use computer enumeration to sort them 
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out. We obtain the following recursion relations: 

A('+I) = A3 +6A4+ 16AS+ 34A6+76A7+ 112A8+ 112A9+64A" 

+ B A ~ (  8 + 36A + 140A2 + 292A3 + 424A4 + 332A') 

+ ~ ~ ~ ~ ( 7 2 + 3 5 2 A + 7 0 4 A ~ +  1728A3) + B4A4(344+ 1568A+848A2) 

+ B2A3( 12 + 12A+ 1 18A2 + 380A'+ 806A4+ 664A') 

+ B5A4(264+ 3192A) + 320B6A3 (30) 

B('+' )  = A6 + 12A' + 40A8 + 60A9 + 32A" + BA6( 28 + 88A + 224A2 + 160A3) 

+ B2A6(40+ 496A + 596A2) + B3AS( 176 + 768A + 1056A2) 

+ B4A3(88+264A2+2534A3)+ B5A4(1152+ 1888A) 

+ 5808B6A4+ 1936B7A3+4308B8A2 (36) 

where we have suppressed the iteration index r on the right-hand side for clarity. The 
initial values of these functions are 

A"'=x2+2x3w+2x4w (4a 1 
B"'= x4w4. (46) 

For simplicity we have restricted the attractive interactions to bonds within first- 
order tetrahedral units of the fractal lattice (i.e. the interaction strength w appears 
only in the initial values of the generating functions, not in the recursion itself). It 
has been verified in previous work that this restriction plays no role in the determination 
of critical exponents, as expected on universality grounds. Of course, if one wants to 
know the precise form of the phase boundaries of the full problem with interactions 
on all stages, i t  will be necessary to use more generating functions in the recursion. 

We proceed by studying the properties of the recursion equations (3) and (4). One 
finds three non-trivial fixed points. 

(i)  The high-temperature fixed point (A, B)* = (0.341 96,0.023 95) is reached for 
small values of the interaction w < w, = 5.63. Linearising around the fixed point we 
find only one eigenvalue larger than one, A = 5.362 01. We identify this point as a SAW 

fixed point, corresponding to the extended states of the chain. The critical exponent 
vSAW = log 3/log A = 0.6542 is larger than the value v = 0.588 for three-dimensional 
Euclidean space (Le Guillou and Zinn-Justin 1985). This is in contrast to the behaviour 
of a random walk on the fractal lattice, for which vRw = d / 2 D  = 0.3817 is less than 
the corresponding Euclidean value i. The critical exponent a which controls the 
singular behaviour of the generating function P(x)  for closed polygons is given by the 
scaling law a = 2 - DvsAw = 0.6288 (Dhar 1977). 

(i i)  The tricritical fixed point (A, B ) *  = (0.207 17,0.430 75) is reached when starting 
with w = w,. We obtain both eigenvalues greater than one: A = 8.723 08, A 2  = 2.450 12, 
and the geometric exponent is U, = log 3/log A I  = 0.5072 (the third relevant eigenvalue 
for this tricritical point would correspond to the renormalisation of endpoints of the 
chain, which involves additional generating functions). The free energy per site f has 
a singular behaviour at this point: 

f- I w - Wc12-al with at=2- log  hI/lOg h2=  -0.4170. 

The exponent is negative and therefore the specific heat is smooth at this transition, 
which is analogous to the standard collapse transition. 
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( i i i )  The fixed point ( A ,  B ) * = ( O , m )  can be analysed by keeping the dominant 

B,, I - 4308 BXA2 

terms in the right-hand side of ( 3 ) :  

A,,, -320B'A' as x + x,( w )  and w > w,. 

Making the change of variables A = A, y = BA', with z = (d73 - 5)/  12, one obtains 
asymptotically 

where C is a constant. Linearising this equation around the fixed point ( y * ,  A = 0 ) ,  
we find one relevant eigenvalue A = (1  1 +J73)/2, corresponding to v' = 0.481 95. The 
fractal dimension of the chain in this phase, Dch = 1/ v'= 2.074 91, is larger than for 
the two other states, but it is still less than the fractal dimension of the lattice 
D = 2.095 90. This is in contrast with the case of linear polymers on regular lattices 
and on the other fractal lattices previously studied, where one finds Dch = D for w > w,.  
The density of monomers per site vanishes asymptotically in the new phase, so we 
propose to call it the 'semicompact' phase. 

It is easy to understand the physical origin of such a behaviour. The topological 
structure of the lattice of figure 1 does not allow polymer configurations where all 
vertices would be occupied. This appears in equation ( 3 6 )  through the absence of 
terms of order B'" which could give rise to a standard compact phase with Dch= D. 
For w > w, the polymer chain is 'frustrated' on this lattice: i t  cannot realise the state 
of minimum energy, in close analogy with the situation for frustrated lattice spin 
systems, e.g., the lsing antiferromagnet on a triangular lattice. Even a state with a 
finite monomer density is not allowed, because the topological obstruction occurs on 
all scales. The ramification of the basic tetrahedron is sufficiently high, however, to 
allow strong local self-interaction effects and the polymer reaches a compromise through 
the 'semi-compact' state. 

It has been suggested recently that the collapse transition in lattice models of 
polymers could be interpreted as some kind of a spin-glass transition (Derrida and 
Saleur 1985, Saleur 1986, Privman 1986 and references therein). Let us emphasise that 
the frustration effect that appears here is of a different nature and  is due to the topology 
of the lattice; it does not exist on Euclidean lattices but it might be relevant to polymers 
placed in random media, when the local potential energy of the monomers varies 
rapidly from place to place. The favourable regions then have a geometry similar to 
percolation clusters and  become fractal close to the percolation threshold. It is known 
that such clusters have a rather low ramification but their topology is not known in 
enough detail to predict if the effect we have discovered on a deterministic fractal also 
occurs in such more realistic situations. Anyway, little work has been devoted to 
self-interacting polymers in disordered systems and  it would be very interesting to 
investigate this problem in more detail. 
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